Thursday, 13 November 2025

Hessian Matrix

by W. B. Meitei, PhD


The Hessian matrix is a square matrix of second-order partial derivatives of a scalar-valued function. Suppose f(x1, x2, …, xn) is a scalar function of n variables, then the Hessian matrix H of f is an n×n matrix defined as,

\[H(f) = \begin{bmatrix} \frac{\partial^{2}f}{\partial x_{1}^{2}} & \frac{\partial^{2}f}{\partial x_{1}\partial x_{2}} & \ldots & \frac{\partial^{2}f}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{2}^{2}} & \ldots & \frac{\partial^{2}f}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f}{\partial x_{n}\partial x_{2}} & \ldots & \frac{\partial^{2}f}{\partial x_{n}^{2}} \end{bmatrix}\]

 

Note:

  • Symmetry: If all second partial derivatives are continuous, the Hessian is symmetric, i.e.,

\[\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}} = \frac{\partial^{2}f}{\partial x_{j}\partial x_{i}}\]

  • Critical points and convexity: The Hessian is used to determine the type of critical points (minima, maxima, saddle points). For a twice differentiable function,
    • Positive definite Hessian at a point → local minimum.
    • Negative definite Hessian at a point → local maximum.
    • Indefinite Hessian → Saddle point. 



Suggested Citation: Meitei, W. B. (2025). Hessian Matrix. WBM STATS.

No comments:

Post a Comment